Algebraic Structure, Computational Benefits

Graham Enos

Februrary 2018

Me: "Hey Ben, you could make this a semigroup ... ooo no wait, it's a monoid! I wonder if it commutes?"

Ben: (rolls eyes) "Sure Graham, whatever."

Adam: (quits)

Nerdery

But with a purpose

Making algebraic structure explicit can yield computational benefits.

Semigroup

 (S, \oplus) forms a semigroup if \oplus is associative:

$$\forall x, y, z \in S$$
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

In Scala, stolen from cats:

```
trait Semigroup[A] {
  def combine(x: A, y: A): A // aka |+|
}
```

Examples

- · Integers with addition
- Doubles (\mathbb{R}) with maximum
- (Nonempty-) Lists with concatenation
- · Square nonnegative matrices with multiplication

Monoid

 (\mathcal{M},\oplus) forms a monoid if it's a semigroup and there's an identity:

 $\exists \epsilon \in M \text{ such that } \forall x \in M$

 $\epsilon \oplus x = x = x \oplus \epsilon$

```
trait Monoid[A] extends Semigroup[A] {
  def empty: A
}
```

Examples

- · Integers with addition and zero
- Doubles with maximum and $-\infty$
- Lists with concatenation and []
- Square nonnegative matrices with multiplication and I

Why do we care

From Mathematics to Generic Programming

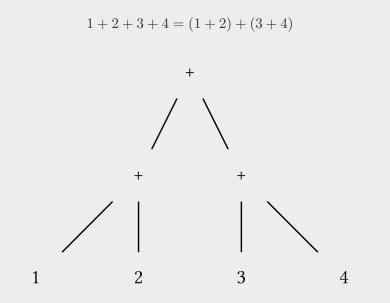
- big integer libraries: exponentiation
- matrices: scalar multiplication
- matrices: exponentiation (e.g. Fibonacci numbers)
- cryptography: double-and-add for elliptic curves
- · cryptography: square-and-multiply for modular exponentiation

... all the same algorithm "Egyptian multiplication," "Russian Peasant," etc. logarithmic time instead of linear

More interestingly

Associativity \implies Parallelism

Parallel Summation



GaussianMonoid.sc (lifted from HLearn)

You bring the mapping, I'll bring the aggregation

I needed a Map[String, BinaryClassifierPerformance].
For each line of deserialized JSON:

- 1. extract text attribute
- 2. run 4 different NER models over the text
- 3. compare each result to expected, put into a map
- 4. aggregate all the maps for each model
- I was going to flatMap and eagerMapValues and ...

Writing that code

foldMap to the rescue

monoid instance for BinaryClassifierPerformance

- ... Map[String, BinaryClassifierPerformance] a monoid
- ∴ code becomes a simple foldMap

Instances beget instances

In cats:

- Either, List, Queue, Stream, String, Vector, etc.
- Monoid[A], Monoid[B] ⇒ Monoid[(A, B)]
- Semigroup[A] ⇒ Monoid[Option[A]], Semigroup[Future[A]], Monoid[Map[K, A]]

In algebird, an aggregation system where monoids are used for approximate data types (Bloom filter, Count-min sketch, HyperLogLog, etc.), moving averages, Gaussian distributions, etc.

Bonus round thanks to tesser

(C, \oplus) a commutative monoid if a monoid and

$$\forall x, y \in C$$
$$x \oplus y = y \oplus x$$

Associativity \implies Map-Reduce Associativity + Commutativity \implies Map-Shuffle-Reduce

Lord of the Semirings

 $({\it S},\oplus,\otimes)$ is a semiring if

- (S, \oplus) a commutative monoid
- (S, \otimes) a monoid
- distribution:

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) (x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z)$$

• absorption: $\mathbf{x} \otimes \mathbf{0} = \mathbf{0} = \mathbf{0} \otimes \mathbf{x}$

One of my favorite things

Tropical Semiring $(\mathbb{T}, \oplus, \otimes)$, where

$$\mathbb{T} := \mathbb{R} \cup \{\infty\}$$
$$x \oplus y := \min(x, y)$$
$$x \otimes y := x + y$$

Shortest distance in graph theory → matrix multiplication com.twitter.algebird.MinPlus

Thanks!

Bibliography

- gratisography.com
- typelevel.org/cats
- underscore.io/books/scala-with-cats
- twitter.github.io/algebird
- izbicki.me
- github.com/aphyr/tesser
- Nine Chapters on the Semigroup Art, Cain
- From Mathematics to Generic Programming, Stepanov
- Tropical Semirings, Pin
- Provenance Semirings, Green et. al.
- ... Haskell