
Algebraic Structure, Computational Benefits

Graham Enos

Februrary 2018

PR Reviews in DC

Me: “Hey Ben, you could make this a semigroup … ooo no wait, it’s
a monoid! I wonder if it commutes?”

Ben: (rolls eyes) “Sure Graham, whatever.”

Adam: (quits)

Nerdery

But with a purpose

Making algebraic structure explicit can yield computational benefits.

Semigroup

(S, ⊕) forms a semigroup if ⊕ is associative:

∀x, y, z ∈ S
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

In Scala, stolen from cats:

trait Semigroup[A] {
def combine(x: A, y: A): A // aka |+|

}

Examples

• Integers with addition

• Doubles (R) with maximum

• (Nonempty-) Lists with concatenation

• Square nonnegative matrices with multiplication

Monoid

(M, ⊕) forms a monoid if it’s a semigroup and there’s an identity:

∃ϵ ∈ M such that ∀x ∈ M
ϵ ⊕ x = x = x ⊕ ϵ

trait Monoid[A] extends Semigroup[A] {
def empty: A

}

Examples

• Integers with addition and zero

• Doubles with maximum and −∞
• Lists with concatenation and []

• Square nonnegative matrices with multiplication and I

Why do we care

From Mathematics to Generic Programming

• big integer libraries: exponentiation

• matrices: scalar multiplication

• matrices: exponentiation (e.g. Fibonacci numbers)

• cryptography: double-and-add for elliptic curves

• cryptography: square-and-multiply for modular exponentiation

… all the same algorithm
“Egyptian multiplication,” “Russian Peasant,” etc.
logarithmic time instead of linear

More interestingly

Associativity =⇒ Parallelism

Parallel Summation

1 + 2 + 3 + 4 = (1 + 2) + (3 + 4)

Demo

GaussianMonoid.sc (lifted from HLearn)

I r foldMap

From cats.Foldable:

def foldMap[A, B](fa: F[A]) // foldable collection
(f: A => B) // mapping to a monoid
(implicit B: Monoid[B]): B =

foldLeft(fa, B.empty)((b, a) => B.combine(b, f(a)))

You bring the mapping, I’ll bring the aggregation

com.qf.stats.nlp.ner.evaluation.AylienNERTesting

I needed a Map[String, BinaryClassifierPerformance].
For each line of deserialized JSON:

1. extract text attribute

2. run 4 different NER models over the text

3. compare each result to expected, put into a map

4. aggregate all the maps for each model

I was going to flatMap and eagerMapValues and …

Writing that code

foldMap to the rescue

monoid instance for BinaryClassifierPerformance
∴ Map[String, BinaryClassifierPerformance] a monoid
∴ code becomes a simple foldMap

Instances beget instances

In cats:

• Either, List, Queue, Stream, String, Vector, etc.

• Monoid[A], Monoid[B] =⇒ Monoid[(A, B)]

• Semigroup[A] =⇒ Monoid[Option[A]],
Semigroup[Future[A]], Monoid[Map[K, A]]

In algebird, an aggregation system where monoids are used for
approximate data types (Bloom filter, Count-min sketch,
HyperLogLog, etc.), moving averages, Gaussian distributions, etc.

Bonus round thanks to tesser

(C, ⊕) a commutative monoid if a monoid and

∀x, y ∈ C
x ⊕ y = y ⊕ x

Associativity =⇒ Map-Reduce

Associativity + Commutativity =⇒ Map-Shuffle-Reduce

Lord of the Semirings

(S, ⊕, ⊗) is a semiring if

• (S, ⊕) a commutative monoid

• (S, ⊗) a monoid

• distribution:

x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z)

(x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z)

• absorption: x ⊗ 0 = 0 = 0 ⊗ x

One of my favorite things

Tropical Semiring (T, ⊕, ⊗), where

T B R ∪ {∞}
x ⊕ y B min(x, y)
x ⊗ y B x+ y

Shortest distance in graph theory 7→ matrix multiplication
com.twitter.algebird.MinPlus

Thanks!

Bibliography

• gratisography.com

• typelevel.org/cats

• underscore.io/books/scala-with-cats

• twitter.github.io/algebird

• izbicki.me

• github.com/aphyr/tesser

• Nine Chapters on the Semigroup Art, Cain

• From Mathematics to Generic Programming, Stepanov

• Tropical Semirings, Pin

• Provenance Semirings, Green et. al.

• … Haskell

